

Alumn@	Profesor
DNI	

Ejercicio 1 (1.30p)	Ejercicio 2 (1.00p)	Ejercicio 3 (1.70p)	NOTA
Ejercicio 4 (2.00p)	Ejercicio 5 (2.00p)	Ejercicio 6 (2.00p)	

EJERCICIOS DE LÓGICA (4 puntos)

[1.30] **Ejercicio 1.** Formaliza e interpreta en lógica de proposiciones.

Considera las proposiciones **P**, **Q** y **R**, definidas como **P**: hay tráfico, **Q**: llueve, **R**: el semáforo está verde.

Considera estas expresiones:

E₁: Es cierto que hay tráfico y llueve a menos que el semáforo esté en verde.

E2: Si hay tráfico, pero no llueve, entonces es falso que el semáforo esté en verde sólo si no llueve.

E₃: Es suficiente que no haya tráfico o lluvia para que el semáforo esté verde, es decir, al menos uno es cierto: hay tráfico o llueve o el semáforo no está verde.

- A. (1.00) Escribe la fórmula bien formada para cada expresión \mathbf{E}_n , e indica cuál es su conectiva principal.
- B. (0.30) Indica si $I_1 = \{ P: v; Q: v; R: v \}, I_2 = \{ P: F; Q: v; R: F \}$ son interpretaciones modelo o contramodelo.

SOLUCIÓN

A: E1: -(P^Q)>R. Su conectiva principal es \rightarrow , porque es la que determina su valor de verdad E2: P^-Q -(P^-Q). Su conectiva principal es \rightarrow , porque es la que determina su valor de verdad. E3: -(P^-Q)>R = P^-Q^- R. Su conectiva principal es \leftarrow , porque es la que determina su valor de verdad.

B: Para $11=\{P:v, Q:v, R:v\}$

- E1: -(P^Q)>R; F>V; V Por tanto, la interpretación I1 es **modelo** de la fórmula fbf_E1, pues la hace verdadera.
- E2: P^-Q>-(R>-Q); F>V; V Por tanto, la interpretación l1 es **modelo** de la fórmula fbf_E2, pues la hace verdadera.
- (PvQ)>R = PvQv-R; F>V = V; V = V; Por tanto, la interpretación l1 es **modelo** de la fórmula fbf_E3, pues la hace verdadera.

Para 12={P:f, Q:v, R:f}

- - (P^Q)>R; V>F; F; Por tanto, la interpretación I2 es **contramodelo** de la fórmula fbf_E1, pues la hace falsa
- E2: P^-Q>-(R>-Q) ; F > F ; V ; Por tanto, la interpretación l2 es **modelo** de la fórmula fbf_E2, pues la hace verdadera.
- E3: -(PvQ)>R = PvQv-R; F>F = V; V = V Por tanto, la interpretación l2 es **modelo** de la fórmula fbf_E3, pues la hace verdadera.

Alumn@	Profesor
DNI	

[1.00] **Ejercicio 2.** Estudiamos un razonamiento $R: P_1, P_2 \implies Q$ y obtenemos esta tabla de verdad:

	P_1	P_2	Q
1	F	V	F
2	F	F	F
3	V	F	F
4	V	V	V

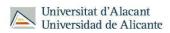
- A. (0.40) A nivel teórico, ¿Qué es un contraejemplo?
- B. (0.15) ¿Existe contraejemplo paraR? Si existe, indícalo.
- C. (0.25) ¿Es válido R? ¿Por qué?
- D. (0.20) Supón que $fbf-R:P_1 o (P_2 o Q)$ es semánticamente contingente. ¿ Cierto o falso... ?
 - a. Res válido para las interpretaciones modelo de fbf-R y no es válido para las contramodelo.
 - b. R no es válido por ser contingente fbf-R.

SOLUCIÓN

- A. Una interpretación contraejemplo de un argumento es una interpretación que hace las premisas ciertas y la conclusión falsa. Si existe, afecta al razonamiento pues lo hace no válido.
- B. No, no existe contraejemplo ya que no existe una interpretación que haga las premisas verdaderas y la conclusión falsa
- C. R es válido ya que no existe un contraejemplo del mismo.
- D. a) Falso, con que haya un contraejemplo el razonamiento no es válido b) Verdadero. Si la fbf asociada a un razonamiento R es contingente, admite al menos una interpretación contraejemplo, por lo que no sería válido. Un razonamiento es válido si y sólo si su fórmula asociada es una tautología. ya que una tautología no admite ninguna interpretación contraejemplo.
- [1.70] **Ejercicio 3.** Realiza estas deducciones naturales siguiendo las estrategias propuestas.
 - A. (0.80) Estrategia: Prueba por casos

-1	D ee C	Premisa
-2	D o A	Premisa
-3	$C \setminus B$	Premisa

 $Q:\,A\,ee B$



Alumn@	Profesor
DNI	

SOLUCIÓN

	Fórmula	Regla aplicada	Supuesto (Apertura/Cierre)
-1	$D \lor C$	Premisa	
-2	D o A	Premisa	
-3	C o B	Premisa	
4	D		Supuesto 1
5	A	MP~2,4	
6	$A \lor B$	ID 5	Cierre Supuesto 1
7	C		Supuesto 2
8	В	MP 3,7	
9	$A \lor B$	ID 8	Cierre Supuesto 2
10	$A \lor B$	$ED\ 1, 4-6, 7-9$	

Alumn@	Profesor
DNI	

B (0.70) Estrategia: Prueba directa

$$Q:\,\neg C\,\to D$$

-1	$(A \lor B) \land \neg (A \land B)$	Premisa
-2	A o C	Premisa
-3	B o D	Premisa

SOLUCIÓN

	Fórmula	Regla aplicada	Supuesto (Apertura/Cierre)
-1	$(A \lor B) \land \lnot (A \land B)$	Premisa	
-2	A o C	Premisa	
-3	B o D	Premisa	
4	eg C		Supuesto
5	$\neg A$	MT2,4	
6	$A \lor B$	EC 1	
7	B	SD~5,6	
8	D	MP~3,7	
9	eg C o D	$TD \ 4 - 8$	

C) (0.20) ¿ En **qué regla** se basa cada una de las 2 estrategias anteriores ?

SOLUCIÓN

El problema A se basa en la regla Eliminación del Disyuntor (ED) o Prueba por Casos (Cas).

El problema B se basa en la regla Teorema de Deducción (TD) o Introducción del Implicador (II)

Alumn@	Profesor
DNI	

EJERCICIOS DE ÁLGEBRA (6 puntos)

[2.00] **Ejercicio 4.**

4.1. (0.80) Sean las siguientes matrices **M** y **0**:

$$M = \begin{bmatrix} p & 2 \\ 1 & 0 \\ 0 & -p \end{bmatrix} \quad O = \begin{bmatrix} q & 0 & -1 \\ 1 & q & 1 \end{bmatrix} \quad_{p, q \in \mathbb{R}.}$$

A. ¿ Es posible $\mathbf{M} \cdot \mathbf{0} = \mathbf{0} \cdot \mathbf{M}$? Justifica tu respuesta.

B. Calcula p y q para que $S=0 \cdot M$ tenga ceros en la diagonal principal. Calcula S.

4.2. (1.20) Sea la siguiente matriz **A**:

$$A = \begin{bmatrix} 2 & 0 & -p \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{con } p \in \mathbb{R}.$$

- A. Escribe las **matrices elementales** E_n para calcular la forma reducida de A. Explica tu respuesta.
- B. Demuestra, haciendo los cálculos, que obtienes la forma reducida de \boldsymbol{A} utilizando tus matrices \boldsymbol{E}_n .
- C. ¿ Conmuta A con alguna de las matrices E_n ? Justifica tu respuesta.

SOLUCIÓN

4.1.A No es posible ya que MxO tiene una dimensión de 3x3 y OxM tiene una dimensión de 2x2, por tanto no pueden ser iguales.

4.1.B
$$S = O M = \begin{bmatrix} qp & 2q+p \\ p+q & 2-p \end{bmatrix}$$
 Igualando el cuarto elemento, 2-p = 0, p = 2. Igualando el primer elemento, qp = 0; 2q = 0; q = 0

4.2.A Para calcular la matriz reducida de A habrá que convertir el 2 en un uno principal y luego realizar la operación necesaria para eliminar el elemento en la posición (1,3). Por tanto las operaciones elementales asociadas a las matrices reducidas serán E1: F1 <- F1/2; E2: F1 <- F1 + p/2 F3, y por tanto las matrices elementales son:

$$E_1 = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; E_2 = \begin{bmatrix} 1 & 0 & p/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Alumn@	Profesor
DNI	

4.2.B

$$I = E_2 E_1 A = \begin{bmatrix} 1 & 0 & p/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & -p \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & p/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -p/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4.2.C

$$AE_1 = \begin{bmatrix} 1 & 0 & -p \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; E_1A = \begin{bmatrix} 1 & 0 & -p/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ por tanto no conmutan}$$

$$AE_2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; E_2A = \begin{bmatrix} 1 & 0 & -p/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 por tanto tampoco conmuntan

[2.00] **Ejercicio 5**.

5.1. (1.00) Dado,

$$U = \{(p, q, r)/p = q \cdot r\} \text{ con } p, q, r \in \mathbb{R}$$

Demuestra si \boldsymbol{U} es un subespacio vectorial de \mathbb{R}^3 .

5.2. (1.00) Dados,

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -2 \\ -2 & 0 \\ 0 & 3 \end{bmatrix} \quad x = (2, -2, 1, -1), y = (3, 6, 9), z = (2, -2)$$
 ecen **x**, **y**, **z** a los subespacios **Fila**, **Columna** y **Nulo** de **A**? Haz los cálculos y justifica tu

¿Pertenecen X, Y, Z a los subespacios Fila, Columna y Nulo de A? Haz los cálculos y justifica tus respuestas.

SOLUCIÓN

- **5.1.** Para que U sea subespacio vectorial de \mathbb{R}^3 , debe cumplir las siguientes propiedades:
 - \circ El vector nulo pertenece a U, $0 \in S$
 - \circ $\alpha u \in S, \, orall \, u \in S, \, lpha \in \mathbb{R}$
 - $\circ \quad u + v \in S, \, \forall \, u, \, v \in S$
 - a) $(0,\,0,\,0)\in S$ ya que si $\,c=0=a\cdot b\,=0\cdot 0$, luego el vector nulo pertenece a S

Alumn@	Profesor
DNI	

b) Sea $u=(a,\,b,\,c)\in S$, hay que demostrar que $\,lpha u\,\in S\,$ $\,lpha u\,=lpha(a,\,b,\,c)=\,(lpha a,\,lpha b,\,lpha c)\,$

Hay que demostrar que $\ \alpha c = \alpha a \cdot \alpha b$, es decir, $\alpha c = \alpha^2 a b$

En general, no se puede asegurar que $\alpha c=\alpha^2ab$ porque por ejemplo tomando $(1,1,1)\in S$ // $1=1\cdot 1$ // y $\alpha=2$ entonces $2\cdot (1,1,1)=(2,2,2)$ que no pertenece a S, pues $2\neq 2\cdot 2$

Es decir, se pueden encontrar muchos ejemplos de vectores (a, b, c) pertenecientes a S y escalares $\alpha \in \mathbb{R}$ de forma que $\alpha(a, b, c)$ no pertenezca a S.

Por tanto, S **NO** es subespacio vectorial de \mathbb{R}^3 .

c) También, la suma de vectores no se cumple en general, pues se pueden encontrar muchos ejemplos de vectores $(a,\,b,\,c)$ y (d,e,f) pertenecientes a S de forma que $(a,\,b,\,c)\,+(d,e,f)$ no pertenezca a S.

Por ejemplo, (1,1,1) y $(2,2,4) \in S$, pero su suma (3,3,5) no.

Por tanto, S **NO** es subespacio vectorial de \mathbb{R}^3 .

5.2.

❖ Subespacio Fila

Las filas de A consideradas como 4 vectores de \mathbb{R}^2 generan un subespacio de \mathbb{R}^2 llamado Subespacio fila de A (Fil A).

Una base de Fil A está formada por las filas de A que en su reducida tiene 1's principales.

Por tanto, hay que obtener la reducida de A:

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -2 \\ -2 & 0 \\ 0 & 3 \end{bmatrix} F1 \leftarrow F1/2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -2 & 0 \\ 0 & 3 \end{bmatrix} F3 \leftarrow F3 + 2F1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -2 & 0 \\ 0 & 3 \end{bmatrix} F4 \leftarrow F4 - 3F2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Las filas de A que tienen un 1 principal en su reducida son las filas 1 y 2. Así, FilA = $Env\{(2,0), (0, -2)\}$; x, y no pertenecen a Fil A porque no pertenecen a \mathbb{R}^2 . x=(2,-2) pertenece a Fil A porque sí se puede obtener como combinación lineal de (2,0) y (0, -2) ya que (2,-2) = 1*(2,0) + 1*(0,-2)

Alumn@	Profesor
DNI	

Subespacio Columna

Una base de Col A está formada por las columnas de A que en su reducida tiene 1's principales. Del resultado de rref(A) obtenido anteriormente, se deduce que las columnas que tienen un 1 principal en la reducida de A son las columnas 1 y 2.

Así, ColA = Env{ (2,0,-2,0), (0,-2,0,3) }. Los vectores y y z no pueden pertenecer al espacio ColA ya que no pertenecen a R4. Para saber si el vector x pertenece al subespacio columna, planteamos el sistema:

$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & -2 & -2 \\ -2 & 0 & 1 \\ 0 & 3 & -1 \end{bmatrix}$$

que es compatible indeterminado. De la primera fila se deduce que a = 1, de la tercera, que $a = -\frac{1}{2}$, llegándose a una contradicción. (Otra manera es hacer operaciones por filas hasta llegar a una fila de la forma (0,0,a), con a distinto de cero, a la cual se puede llegar de manera trivial).

Subespacio Nulo

El subespacio Nulo de A coincide con el conjunto de las soluciones del sistema homogéneo Ax=0, donde los x son vectores $\in \mathbb{R}^2$.

Del resultado de rref(A) obtenido anteriormente, se deduce que el sistema de ecuaciones equivalente no tiene parámetros, ya que las 2 columnas de A tienen un 1 principal. Así, el sistema equivalente es el siguiente:

$$egin{array}{ll} x_1&=0\ x_2&=0 \end{array}$$

Por tanto, el único vector solución del sistema homogéneo Ax = 0 es (0, 0)

$$\mathsf{Asi}, Nul \, A = Env\{(0,0)\}$$

x,y quedan descartados porque no pertenecen a \mathbb{R}^2 .

El vector z = (2,-2) tampoco pertenece a $Nul\ A$ pues no se puede poner como combinación lineal del vector (0,0).

Alumn@	Profesor
DNI	

[2.00] **Ejercicio 6**. Sea la matriz

$$M = \begin{bmatrix} 3 & 0 & 0 \\ 0 & p & 0 \\ 3 & 0 & q \end{bmatrix} \text{ con } p, q \in \mathbb{R}.$$

Sabemos que $u_1=(0,0,1), u_2=(2,0,1)$ son vectores propios de M.

6.1. (0.40) ¿Qué es un vector propio? Da la definición matemática y explícala.

6.2. (0.40) Calcula **p** y **q** sabiendo que la traza de **M** es **3** y usando la definición de vector propio. Justifica.

6.3. (0.20) Calcula los valores propios de **M** y sus multiplicidades algebraicas.

6.4. (1.00) Calcula el subespacio propio asociado al valor propio mayor, determina su multiplicidad geométrica y pon un ejemplo de vector propio asociado. Explica todos los pasos que realices y comprueba los resultados que obtengas

SOLUCIÓN

6.1 Un vector propio es aquel que cumple la ecuación $M.x = \lambda x$, es decir, al realizar la multiplicación de la matriz por el vector, este puede cambiar de módulo, pero no de dirección.

6.2. Si la traza de M es 3,

$$3 + p + q = 3$$
; $p + q = 0$

Si u2 = (2,0,1) es un vector propio de M, entonces:

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & p & 0 \\ 3 & 0 & q \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 6 + q \end{bmatrix} = \lambda_2 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

Sabiendo que $6 = 2*\lambda 2$, se deduce que $\lambda 2=3$; de la última ecuación se deduce que $6+q = \lambda 2$; por tanto q = 3-6 = -3; finalmente, como p+q = 0, p = 3.

$$p = 3, q = -3$$

6.3 Si $u_1=(0,0,1)$ es un vector propio de M, entonces, $\begin{bmatrix} 3 & 0 & 0 \\ 0 & p & 0 \\ 3 & 0 & q \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \text{ de donde se deduce}$ que $\lambda 1=q$, es decir, $\lambda 1=-3$

Por ser M una matriz de dimensiones 3x3, tiene 3 autovalores, luego falta por obtener λ_3 . Para ello, si consideramos la propiedad de que la traza de la matriz M es igual a la suma de sus autovalores, entonces, con lo que $\lambda_1 + \lambda_2 + \lambda_3 = 3$; teniendo en cuenta los valores anteriormente calculados, $\lambda_3 = 3$

Por tanto los valores propios de M son:

 $\lambda 1 = 3$, multiplicidad algebraica: 2

 $\lambda 2 = -3$, multiplicidad algebraica: 1

Alumn@	Profesor
DNI	

6.4.

El valor propio mayor de los 3 es $\lambda = 3$.

Así, el subespacio propio asociado a $\lambda=3$, $E_A(3)=Nul(A-3I)$

$$Nul(A-3I)=\{x/x\in \mathbb{R}^n,\, (A-3I)x=0\}$$

De esta forma, hay que calcular las soluciones del sistema homogéneo (A-3I)x=0

La matriz asociada a dicho sistema es:

$$M - 3I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & -6 \end{bmatrix}; rref(M - 3I) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$

Resolviendo el sistema asociado:

$$x1 = 2*x3$$

x2 parámetro

x3 parámetro

Así, las soluciones del sistema tienen la forma $\alpha(2,0,1) + \beta(0,1,0)$

Por tanto el subespacio propio asociado a $\lambda = 3$ será Env{ (2,0,1), (0, 1, 0) } y su multiplicidad geométrica, es decir, el número de vectores en la base del espacio, será de 2. mg(3) = 2.

Para comprobar el resultado con el autovector (2,0,1), aplicamos la expresión $A \cdot v = \lambda \cdot v$

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 3 & 0 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

Para comprobar el resultado con el autovector (0,1,0), aplicamos la expresión $A \cdot v = \lambda \cdot v$

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 3 & 0 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Con lo que queda demostrado para los dos vectores de la base.